GCE Physics A

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1. Abbreviations, annotations and conventions used in the detailed Mark Scheme.

/	$=$ alternative and acceptable answers for the same marking point
(1)	$=$ separates marking points
allow	$=$ answers that can be accepted
not	$=$ answers which are not worthy of credit
reject	$=$ answers which are not worthy of credit
ignore	$=$ statements which are irrelevant
()	$=$ words which are not essential to gain credit
$\overline{\text { ecf }}$	$=$ underlined words must be present in answer to score a mark
AW	$=$ error carried forward
ora	$=$ or reverse wording argument

2. Annotations: the following annotations are available on SCORIS.
$\checkmark \quad=$ correct response
x = incorrect response
$\mathrm{AE}=$ arithmetic error
BOD = benefit of the doubt (where professional judgement has been used)
NBOD = benefit of the doubt not given
ECF = error carried forward
$\wedge \quad=$ information omitted
CON = contradiction (in cases where candidates contradict themselves in the same response)
RE = rounding error
$\mathrm{SF}=$ error in the number of significant figures
POT = error in the power of 10 in a calculation
? $\quad=$ wrong physics or equation
NAQ = not answered question
FT = follow through

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent Amarks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C-mark is given.

A marks:
These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Q 1	Expected Answers	Marks	Additional Guidance
a	work done $\rightarrow \mathrm{N} \mathrm{m}$ $\begin{aligned} & \text { stress } \rightarrow \mathrm{N} \mathrm{~m}^{-2} \\ & \text { density } \rightarrow \mathrm{kg} \mathrm{~m}^{-3} \end{aligned}$	B2	Allow 2 marks if all correct Allow 1 mark if one or two responses are correct
b(i)	weight / gravitational force	B1	Not 'gravity'
b(ii)	$\begin{aligned} & (\text { force }=) 4.8 \times 9.81(=47.1 \mathrm{~N}) \\ & \text { pressure }=\frac{4.8 \times 9.81}{0.085 \times 0.085} \\ & \text { pressure }=6.52 \times 10^{3}(\mathrm{~Pa}) \end{aligned}$	$\overline{\mathrm{C} 1}$ A1	Note: 2 marks for bald 2 sf answer of $6.5 \times 10^{3}(\mathrm{~Pa})$ Allow 1 mark for ' $48 / 0.085^{2}=6.64 \times 10^{3}$; g taken as $10\left(\mathrm{~N} \mathrm{~kg}^{-1}\right)$ Allow 1 mark for ' $4.8 \times 9.81 / 8.5^{2}=0.65$ ' Not 'mass/area' since it is 'wrong physics'.
b(iii)	$\begin{aligned} & \hline 8 \\ & 4 \\ & 2 \end{aligned}$	B1 B1 B1	This must be consistent with the values for mass and crosssectional area.
	Total	8	

Q2	Expected Answers	Marks	Additional Guidance
a	The distance travelled (by the car) from when the driver sees a problem and the brakes are applied	B1	Note: There must be reference to 'stimulus' and brakes. Not: ‘speed \times reaction time’
b	Distance / displacement	B1	
c(i)	$\begin{aligned} & \text { distance }=20 \times 0.5 \\ & \text { distance }=10(\mathrm{~m}) \end{aligned}$	B1	
c(ii)	$\begin{aligned} & \text { distance }=\text { area under graph } \\ & \text { distance }=1 / 2 \times 20 \times 3.5 \\ & \text { distance }=35(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow 1 mark if stopping distance of 45 m quoted No marks for an answer of ' $20 \times 3.5=70(\mathrm{~m})$ '
d(i)	$\begin{aligned} & \text { gradient }=\text { 'acceleration' } / a=\frac{v-u}{t} / a=\frac{\Delta v}{\Delta t} \\ & a=(-) \frac{20}{3.5} \\ & \text { deceleration }=5.71(4) \approx 5.7\left(\mathrm{~m} \mathrm{~s}^{2}\right) \end{aligned}$	C1 A1	The first mark is for selecting correct equation or stating $a=$ gradient Note: Ignore negative sign
d(ii)	$\begin{aligned} & \text { force }=910 \times 5.71 \\ & \text { force } \approx 5200(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Possible ecf from (d)(i)
e	Increases by a factor of 4 Braking distance \propto speed $^{2} /$ ' $F X=1 / 2 m v^{2}$ '/ speed doubles and time doubles	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	

Q2	Expected Answers	Marks	Additional Guidance
f	Large deceleration / rapid decrease in speed (triggers the air bag) Prevent collision with steering wheel / windscreen / dashboard Time (for stopping) is more / distance (for stopping) is more Smaller deceleration / acceleration (of person) B1	B1	Not 'quick / sudden / rapid deceleration' Not 'large acceleration'
	B1	Allow: 'smaller rate of change of momentum' Not 'smaller rate of deceleration'	

Q3	Expected Answers	Marks	Additional Guidance
a	work (done) $=$ force \times distance moved in the direction of force	B1	Allow: work $=$ force \times displacement in direction of force Not: work (done) = energy transfer
b(i)	(Net/total/resultant force is) zero The acceleration is zero	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Not ' $\mathrm{a}=0$ '
b(ii)	$\begin{aligned} & 9.0 \times 10^{3} \cos 83^{\circ} \text { or } 9.0 \times 10^{3} \sin 7^{\circ} \\ & 1.1 \times 10^{3}(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Not ' $9.0 \times 10^{3} \cos 7^{\circ}$,
b(iii)	$\begin{aligned} & \text { work done per second }=300 \times 18 \\ & \text { work done per second }=5400\left(\mathrm{~J} \mathrm{~s}^{-1}\right) \end{aligned}$	B1	
b(iv)	```(total force down slope =) \(1100+300(\mathrm{~N})\) (power =) \(1400 \times 18\) (power \(=\)) \(2.52 \times 10^{4}(\mathrm{~W})\) or \(2.5 \times 10^{4}(\mathrm{~W})\) or rate of work done against weight \(=1.1 \times 10^{3} \times 18(=19800 \mathrm{~W})\) power \(=19800+5400\) power \(=2.52 \times 10^{4}(\mathrm{~W})\) or \(2.5 \times 10^{4}(\mathrm{~W})\)```	C1 C1 A1 C1 C1 A1	Allow: 1400 (N) Possible ecf from (b)(ii) Allow: ' ${ }^{\prime} \mathrm{Fx} \cos \theta=9.0 \times 10^{3} \times 18 \times \cos 83^{\circ}$, Possible ecf from (b)(ii) and (b)(iii)
	Total	9	

Q4	Expected Answers	Marks	Additional Guidance
a	kinetic energy $=1 / 2 \times$ mass \times speed 2	B1	Allow $\mathrm{KE}=1 / 2 m v^{2}$, where $m=$ mass and $v=$ speed Allow velocity instead of speed Not: $K E=1 / 2 m v^{2}$ on its own
b(i)	$\begin{aligned} & \text { initial } \mathrm{KE}=1 / 2 \times 3.0 \times 10^{-2} \times 200^{2}(=600 \mathrm{~J}) \\ & \text { final } \mathrm{KE}=1 / 2 \times 3.0 \times 10^{-2} \times 50^{2}(=37.5 \mathrm{~J}) \\ & \text { Loss in } \mathrm{KE}=600-37.5 \\ & \text { Loss in } \mathrm{KE}=562.5(\mathrm{~J}) \approx 560(\mathrm{~J}) \end{aligned}$	C1 C1 A1	Special case: 1 mark for ' $\mathrm{KE}=1 / 2 \mathrm{mb}^{\underline{2}}$... loss in $\mathrm{KE}=(1 / 2 \times 3.0 \times$ $10^{-2} \times 200-1 / 2 \times 3.0 \times 10^{-2} \times 50=$) $2.25(\mathrm{~J})^{\prime}$ Note: No marks for $337.5(\mathrm{~J})$ when Δv used in the KE equation $\left(1 / 2 \times 3.0 \times 10^{-2} \times 150^{2}=337.5 \mathrm{~J}\right)$
b(ii)	$\begin{aligned} & \text { work done }=(\text { loss in }) \text { KE } / a=\left(v^{2}-u^{2}\right) / 2 s \\ & F \times 1.5 \times 10^{-2}=562.5 \quad / \quad a=(-) 1.25 \times 10^{6} \\ & \text { force }=3.75 \times 10^{4}(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Possible ecf from (b)(i) Allow: A 2 sf answer of either $3.8 \times 10^{4}(\mathrm{~N})$ or $3.7 \times 10^{4}(\mathrm{~N})$
	Total	6	

Q5	Expected Answers	Marks	Additional Guidance
a	...incorrect Mass (of the particle) increases (as it approaches speed of light)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	In question 5, use tick or cross on Scoris to show if the mark is awarded Not: mass changes
bcorrect KE is changed into (G)PE or (G)PE is changed into KE or change in $\mathrm{KE}=$ change in (G)PE (AW)	M1 A1	Note: This mark is for stating the transfer of energy between kinetic and (gravitational) potential
c	...incorrect Weight is equal to drag / air resistance / friction (and not acceleration of free fall)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow alternative response: \qquad incorrect Acceleration and weight are not the same quantities (AW)
d	...incorrect The technique is trilateration \checkmark The term trilateration to be included and spelled correctly to gain the A1 mark	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Note 1 mark if 'trilateration' is misspelled but candidate has mentioned that the statement is incorrect
	Total	8	

Q6	Expected Answers	Marks	Additional Guidance
a	A pair of equal and opposite forces (with their lines of action separated by a distance) The term opposite to be included and spelled correctly to gain mark	B1	Must use tick or cross on Scoris to show if the mark is awarded No mark can be scored if there is no reference 'opposite'. (Allow 'opposing')
b(i)	moment $=$ force \times perpendicular distance from pivot / axis / point	B1	
b(ii)	$\begin{aligned} & (\text { clockwise moment }=) 20 \times 0.60 \\ & \text { and (anticlockwise moments =) } 10 \times 0.20+30 \\ & \times 0.30 \end{aligned}$ (Not in equilibrium because) clockwise moment \neq anticlockwise moment / clockwise moment > anticlockwise moment / 12 (Nm) > 11 (Nm) / 12 (Nm) $\neq 11$ (Nm)	M1 A1	Allow a correct moments equation involving all three forces
	Total	4	

Q7	Expected Answers	Marks	Additional Guidance
a(i)	Y (is brittle)	B1	
a(ii)	(Both) obey Hooke's law	Allow (For both) stress \propto strain / elastic (behaviour) / 'not plastic (behaviour)' / force \propto extension Not: 'straight line(s)'	
a(iii)	Gradient (of the linear section) is equal to Young Modulus / gradient is largest \mathbf{X} (has largest Young modulus)	B1	Allow: 'slope' for 'gradient'
\mathbf{b}	(force increases by a factor of) 30^{2} force $=240 \times 30^{2}$ force $=2.16 \times 10^{5}(\mathrm{~N})$	C1	A1
	Total	$\mathbf{6}$	

Q8	Expected Answers	Marks	Additional Guidance
a	$\begin{aligned} & \text { time }=1.2 / 8.0 \\ & \text { time }=0.15(\mathrm{~s}) \end{aligned}$	M1 A0	Note: The mark is for dividing the distance by the speed hence must be seen
b	$\begin{aligned} & s=u t+\frac{1}{2} a t^{2} \text { and } u=0 \quad / \quad s=\frac{1}{2} a t^{2} \quad / \\ & h=\frac{1}{2} \times 9.81 \times 0.15^{2} \\ & h=0.11(\mathrm{~m}) \end{aligned}$	C1 A1	
c	They both have same (vertical) acceleration / same acceleration of free fall / acceleration of $9.8 \underline{\mathrm{~ms}}^{-2}$ (and zero initial vertical velocity)	B1	Note: Must have reference to both objects
	Total	4	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

